The relationship between balance and spatiotemporal gait factors with quality of life in below-knee amputees

Document Type : Research Paper


1 Department of sport injuries and corrective exercises, Kish international campus, Tehran University, Kish, Iran

2 Department of Biomechanics and Sport Injuries, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran.


Background: Losing a limb can negatively impact balance and gait, leading to reduced quality of life.
Aim: This study aimed to examine correlations between spatiotemporal gait and balance with scores of the Quality of Life questionnaire.
Materials and Methods: 30 veterans with unilateral below-knee amputations underwent gait analysis to measure step length, stride length, stance time, cadence, velocity, and walking symmetry index by step length. Static balance was assessed via the center of pressure path length by Wii Balance Board during standing. The Timed Up and Go test evaluated dynamic balance. The QoL scores were recorded using the Quality of Life questionnaire for amputees, Trinity Amputation, and Prosthesis Experience Scales (TAPES). Pearson’s correlation coefficients were calculated between spatiotemporal of gait, balance scores, and TAPES domain outcomes.
Results: Stride length (r=0.660), prosthetic step length (r=0.648) and intact step length (r=0.618) showed significant moderate positive correlations with psychosocial adjustment, while amputation limb stance time (r=-0.409) correlated weakly. Activity limitations negatively correlated with step/stride lengths (r range -0.781 to -0.784) and cadence (r=-0.538). Moreover, prosthesis satisfaction was associated with improved walking symmetry (r=0.445) and prosthetic stance time (r=0.388).
Conclusion: Optimizing gait and balance in below-knee amputation can improve quality of life. Biomechanical factors should be targeted in rehab programs to enhance well-being.


[1] Dillingham TR, Pezzin LE, MacKenzie EJ. "Limb amputation and limb deficiency: epidemiology and recent trends in the United States". Southern Medical Journal. 2002; 95(8): 875-84. doi:  10.1097/00007611-200208000-00018
[2] Bowker JH. "Partial foot amputations and disarticulations: surgical aspects". JPO: Journal of Prosthetics and Orthotics. 2007; 19(8): P62-P76. doi: 10.1097/JPO.0b013e3180dca55f.
[3] Hadj-Moussa F, Ngan CC, Andrysek J. "Biomechanical factors affecting individuals with lower limb amputations running using running-specific prostheses: A systematic review". Gait Posture. 2022; 92: 83-95. doi: 10.1016/j.gaitpost.2021.10.044.
[4] Horak FB. "Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls?". Age Ageing. 2006; 35(2): ii7-ii11. doi: 10.1093/ageing/afl077.
[5] Dirmanchi N, khanjani MS. "Comparison of resilience and self-efficacy in athletes and non-athletes with disabilities caused by spinal cord injury". Iranian Journal of Psychiatry and Clinical Psychology. 2019; 25(2): 150-63. doi: 10.32598/ijpcp.25.2.150. [in Persian]
[6] Sinha R, van den Heuvel WJ, Arokiasamy P. "Factors affecting quality of life in lower limb amputees". Prosthet Orthot Int. 2011; 35(1): 90-6. doi: 10.1177/0309364610397087. [in Persian]
[7] Gallagher P, MacLachlan M. "The trinity amputation and prosthesis experience scales and quality of life in people with lower-limb amputation". Archives of Physical Medicine and Rehabilitation. 2004; 85(5): 730-6. doi: 10.1016/j.apmr.2003.07.009.
[8] Shamsul A, Mohd Rohaizat H, Muholan K, Noor Zaiha H, Ang W, Sei F, et al. "Quality of life and its influencing factors among physically disabled teenagers in Kuala Lumpur, Malaysia". Malaysian Journal of Public Health Medicine. 2013; 13(2): 11-9. doi: 10.1302/0301-620X.97B9.35192.
[9] Lam T-WJ, Tang LCL, Chau W, Law S, Chan K. "The effect of age, gender and socioeconomic status on self-esteem, body image and quality of life of amputees: An evaluation seven years after the 2008 Sichuan earthquake". Disability, CBR & Inclusive Development. 2019; 29(3). doi: 10.5463/dcid.v29i3.779.
[10] Mazzone B, Farrokhi S, Hendershot BD, McCabe CT, Watrous JR. "Prevalence of low back pain and relationship to mental health symptoms and quality of life after a deployment-related lower limb amputation". Spine. 2020; 45(19): 1368-75. doi: 10.1097/BRS.0000000000003525.
[11] Furtado S, Grimer R, Cool P, Murray S, Briggs T, Fulton J, et al. "Physical functioning, pain and quality of life after amputation for musculoskeletal tumours: A national survey". The Bone & Joint Journal. 2015; 97(9): 1284-90. doi: 10.1016/s0885-3924(02)00511-0.
[12] Davie-Smith F, Coulter E, Kennon B, Wyke S, Paul L. "Factors influencing quality of life following lower limb amputation for peripheral arterial occlusive disease: A systematic review of the literature". Prosthet Orthot Int. 2017; 41(6): 537-47. doi: 10.1177/0309364617690394.
[13] Oh J. The Effect of a 9-Week Structured-Exercise Program on Health-related Fitness, Self-efficacy, and Quality of Life of Adults with Physical Disabilities. Texas Woman's University. 2020.
[14] Sinha R, van den Heuvel WJ, Arokiasamy P. "Factors affecting quality of life in lower limb amputees". Prosthet Orthot Int. 2011; 35(1): 90-6. doi: 10.1177/0309364610397087.
[15] Hando DJ, Byomuganyizi MJ, Ngendahayo JB, Khamisi RH, Kivuyo NE, Kunambi PP, et al. "Factors influencing the health-related quality of life among lower limb amputees: A two-center cross-sectional study". East Afr Health Res J. 2023; 7(1): 121-6. doi: 10.24248/eahrj.v7i1.718.
[16] Godlwana L, Stewart A, Musenge E. "The effect of a home exercise intervention on persons with lower limb amputations: A randomized controlled trial". Clinical Rehabilitation. 2020; 34(1): 99-110. doi: 10.1177/0269215519880295.
[17] Manz S, Valette R, Damonte F, Avanci Gaudio L, Gonzalez-Vargas J, Sartori M, et al. "A review of user needs to drive the development of lower limb prostheses". J Neuroeng Rehabil. 2022; 19(1): 119. doi: 10.1186/s12984-022-01097-1.
[18] Zaheer A, Sharif F, Khan Z, Batool S, Iqbal H. "Quality of life and depression among lower limb amputees". Annals of King Edward Medical University. 2020; 26(2): 364-8. doi: 10.21649/akemu.v26i2.3928.
[19] Asano M, Rushton P, Miller WC, Deathe BA. "Predictors of quality of life among individuals who have a lower limb amputation". Prosthet Orthot Int. 2008; 32(2): 231-43. doi: 10.1080/03093640802024955.
[20] Grzebień A, Chabowski M, Malinowski M, Uchmanowicz I, Milan M, Janczak D. "Analysis of selected factors determining quality of life in patients after lower limb amputation-a review article". Polish Journal of Surgery. 2017; 89(2): 57-61. doi: 10.5604/01.3001.0009.8980.
[21] Cohen J. Statistical Power Analysis for the Behavioral Sciences. Academic Press; 2013.
[22] Azuma Y, Chin T, Miura Y. "The relationship between balance ability and walking ability using the Berg Balance Scale in people with transfemoral amputation". Prosthetics and Orthotics International. 2019; 43(4): 396-401. doi: 10.1177/0309364619846364.
[23] Sansam K, Neumann V, O'Connor R, Bhakta B. "Predicting walking ability following lower limb amputation: a systematic review of the literature". J Rehabil Med. 2009; 41(8): 593-603. doi: 10.2340/16501977-0393.
[24] Manickum P, Ramklass S, Madiba T. "A five-year audit of lower limb amputations below the knee and rehabilitation outcomes: the Durban experience". Journal of Endocrinology, Metabolism and Diabetes in South Africa. 2019; 24(2): 41-5. doi: 10.1080/16089677.2018.1553378.
[25] Karaali E, Duramaz A, Çiloğlu O, Yalın M, Atay M, Aslantaş FÇ. "Factors affecting activities of daily living, physical balance, and prosthesis adjustment in non-traumatic lower limb amputees". Turkish Journal of Physical Medicine and Rehabilitation. 2020; 66(4): 405. doi: 10.5606/tftrd.2020.4623.
[26] Gailey R, Gaunaurd I, Raya M, Kirk-Sanchez N, Prieto-Sanchez LM, Roach K. "Effectiveness of an evidence-based amputee rehabilitation program: a pilot randomized controlled trial". Physical Therapy. 2020; 100(5): 773-87. doi: 10.1093/ptj/pzaa008.
[27] Faraji E, Barati AH, Sadeghi H, Fateh HR, Allami M, Soroush MR. "Effect of 12-week corrective training on lumbar multifidus muscle asymmetry and pain intensity in veterans with one-sided below-knee amputation suffering from chronic low back pain". Iranian Journal of War and Public Health. 2018; 10(1): 47-52. doi: 10.29252/ijwph.10.1.47.
[28] Fernández-González P, Cuesta-Gómez A, Miangolarra-Page J, Molina-Rueda F. "Reliability and validity of kinovea to analyze spatiotemporal gait parameters. Population. 2020; 6: 7. doi: 10.15366/rimcafd2022.87.009. [in Spanish]
[29] Bartlett HL, Ting LH, Bingham JT. "Accuracy of force and center of pressure measures of the Wii Balance Board". Gait & Posture. 2014; 39(1): 224-8. doi: 10.1016/j.gaitpost.2013.07.010.
[30] Clark RA, Bryant AL, Pua Y, McCrory P, Bennell K, Hunt M. "Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance". Gait Posture. 2010; 31(3): 307-10. doi: 10.1016/j.gaitpost.2009.11.012.
[31] Mayer A, Tihanyi J, Bretz K, Csende Z, Bretz E, Horváth M. "Adaptation to altered balance conditions in unilateral amputees due to atherosclerosis: a randomized controlled study". BMC Musculoskelet Disord. 2011; 12: 118. doi: 10.1186/1471-2474-12-118.
[32] Schoppen T, Boonstra A, Groothoff JW, de Vries J, Göeken LN, Eisma WH. "The timed 'up and go' test: Reliability and validity in persons with unilateral lower limb amputation". Archives of Physical Medicine and Rehabilitation. 1999; 80(7): 825-8. doi: 10.1016/s0003-9993(99)90234-4.
[33] Sawers A, Kim J, Balkman G, Hafner BJ. "Interrater and test-retest reliability of performance-based clinical tests administered to established users of lower limb prostheses". Phys Ther. 2020; 100(7): 1206-16. doi: 10.1093/ptj/pzaa063.
[34] Wasser JG, Herman DC, Horodyski M, Zaremski JL, Tripp B, Page P, et al. "Exercise intervention for unilateral amputees with low back pain: Study protocol for a randomised, controlled trial". Trials. 2017; 18(1): 1-11. doi: 10.1186/s13063-017-2362-0.
[35] Robinson RO, Herzog W, Nigg BM. "Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry". J Manipulative Physiol Ther. 1987; 10(4): 172-6.
[36] Mazaheri M, Fardipour S, Salavati M, Hadadi M, Negahban H, Bahramizadeh M, et al. "The Persian version of trinity amputation and prosthetics experience scale: Translation, factor structure, reliability and validity". Disabil Rehabil. 2011; 33(19-20): 1737-45. doi: 10.3109/09638288.2010.544838.
[37] Lin SJ, Winston KD, Mitchell J, Girlinghouse J, Crochet K. "Physical activity, functional capacity, and step variability during walking in people with lower-limb amputation". Gait & Posture. 2014; 40(1): 140-4. doi: 10.1016/j.gaitpost.2014.03.012.
[38] Yang L, Dyer P, Carson R, Webster J, Foreman KB, Bamberg S. "Utilization of a lower extremity ambulatory feedback system to reduce gait asymmetry in transtibial amputation gait". Gait & Posture. 2012; 36(3): 631-4. doi: 10.1016/j.gaitpost.2012.04.004.
[39] Zhang T, Bai X, Liu F, Fan Y. "Effect of prosthetic alignment on gait and biomechanical loading in individuals with transfemoral amputation: A preliminary study". Gait & Posture. 2019; 71: 219-26. doi: 10.1016/j.gaitpost.2019.04.026.
[40] Brandt A, Huang H. "Effects of extended stance time on a powered knee prosthesis and gait symmetry on the lateral control of balance during walking in individuals with unilateral amputation". Journal of Neuroengineering and Rehabilitation. 2019; 16: 1-11. doi: 10.1186/s12984-019-0625-6.
[41] Valle MS, Casabona A, Sapienza I, Laudani L, Vagnini A, Lanza S, et al. "Use of a single wearable sensor to evaluate the effects of gait and pelvis asymmetries on the components of the Timed Up and Go test, in persons with unilateral lower limb amputation". Sensors. 2021; 22(1): 95. doi: 10.3390/s22010095
[42] Raffalt PC, Kent JA, Stergiou N. "Inter-limb coupling in individuals with transtibial amputation during bilateral stance is direction dependent". Human Movement Science. 2021; 79: 102861. doi: 10.1016/j.humov.2021.102861.
[43] Miller WC, Speechley M, Deathe B. "The prevalence and risk factors of falling and fear of falling among lower extremity amputees". Arch Phys Med Rehabil. 2001; 82(8): 1031-7. doi: 10.1053/apmr.2001.24295.
[44] Highsmith MJ, Andrews CR, Millman C, Fuller A, Kahle JT, Klenow TD, et al. "Gait training interventions for lower extremity amputees: A systematic literature review". Technol Innov. 2016; 18(2-3): 99-113. doi: 10.21300/18.2-3.2016.99.
[45] Davies B, Datta D. "Mobility outcome following unilateral lower limb amputation". Prosthetics and Orthotics International. 2003; 27(3): 186-90. doi: 10.1080/03093640308726681.
[46] Williams MR, D’Andrea S, Herr HM. "Impact on gait biomechanics of using an active variable impedance prosthetic knee". Journal of NeuroEngineering and Rehabilitation. 2016; 13(1): 54. doi: 10.1186/s12984-016-0159-0.
[47] Wong CK, Chen CC, Welsh J. "Preliminary assessment of balance with the Berg Balance Scale in adults who have a leg amputation and dwell in the community: Rasch rating scale analysis". Phys Ther. 2013; 93(11): 1520-9. doi: 10.2522/ptj.20130009.
[48] Wong CK, Ehrlich JE, Ersing JC, Maroldi NJ, Stevenson CE, Varca MJ. "Exercise programs to improve gait performance in people with lower limb amputation: A systematic review". Prosthetics and Orthotics International. 2014; 40(1): 8-17. doi: 10.1177/0309364614546926.
[49] Gailey R, Allen K, Castles J, Kucharik J, Roeder M. "Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use". J Rehabil Res Dev. 2008; 45(1): 15-29. oi: 10.1682/jrrd.2006.11.0147.
[50] Kahle JT, Highsmith MJ, Schaepper H, Johannesson A, Orendurff MS, Kaufman K. "Predicting walking ability following lower limb amputation: An updated systematic literature review". Technol Innov. 2016; 18(2-3): 125-37. doi: 10.21300/18.2-3.2016.125.
[51] Norvang OP, Askim T, Egerton T, Dahl AE, Thingstad P. "Associations between changes in gait parameters, balance, and walking capacity during the first 3 months after stroke: A prospective observational study". Physiotherapy Theory and Practice. 2022; 38(4): 534-42. doi: 10.1080/09593985.2020.1771802.
[52] Chen L, Feng Y, Chen B, Wang Q, Wei K. "Improving postural stability among people with lower-limb amputations by tactile sensory substitution". Journal of Neuroengineering and Rehabilitation. 2021; 18(1): 1-14. doi: 10.1016/j.medengphy.2016.02.013.
[53] Curtze C, Hof AL, Postema K, Otten B. "Staying in dynamic balance on a prosthetic limb: A leg to stand on?". Med Eng Phys. 2016; 38(6): 576-80. doi: 10.1016/j.medengphy.2016.02.013.
[54] Domínguez-Ruiz A, López-Caudana EO, Lugo-González E, Espinosa-García FJ, Ambrocio-Delgado R, García UD, et al. "Low limb prostheses and complex human prosthetic interaction: A systematic literature review". Frontiers in Robotics and AI. 2023; 10: 1032748. doi: 10.3389/frobt.2023.1032748.
[55] Hunt GR, Hood S, Gabert L, Lenzi T. "Effect of increasing assistance from a powered prosthesis on weight-bearing symmetry, effort, and speed during stand-up in individuals with above-knee amputation". IEEE Trans Neural Syst Rehabil Eng. 2023; 31: 11-21. doi: 10.1109/tnsre.2022.3214806.
[56] Knight AD, Dearth CL, Hendershot BD. "Deleterious musculoskeletal conditions secondary to lower limb loss: Considerations for prosthesis-related factors". Adv Wound Care (New Rochelle). 2021; 10(12): 671-84. doi: 10.1089/wound.2019.1079.
[57] Webster JB, Hakimi KN, Williams RM, Turner AP, Norvell DC, Czerniecki JM. "Prosthetic fitting, use, and satisfaction following lower-limb amputation: A prospective study". J Rehabil Res Dev. 2012; 49(10): 1453-504. doi: 10.1682/jrrd.2012.01.0001.
[58] Miller W, Deathe A. "A prospective study examining balance confidence among individuals with lower limb amputation". Disability and Rehabilitation. 2004; 26(14-15): 875-81. doi: 10.1080/09638280410001708887.
[59] van Velzen J, van Bennekom CA, Polomski W, Slootman J, van der Woude LH, Houdijk H. "Physical capacity and walking ability after lower limb amputation: A systematic review". Clinical Rehabilitation. 2006; 20(11): 999-1016. doi: 10.1177/0269215506070700.