The effects of hydrotherapy on muscle strength, body composition, and quality of life in boys with Duchenne dystrophy

Document Type : Research Paper

Authors

Exercise Physiology department, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran

Abstract

Background: Duchenne muscular dystrophy (DMD) is one of the most rampant x-linked recessive lethal genetic disease with prevalence of approximately 1 out of 3500-5000 newborn boys worldwide. DMD is mutations-induced in gene encoding dystrophin that prevent the production of the muscle isoform of dystrophin (Dp427m).
Aim: This study aims to evaluate the impact of hydrotherapy on health-related quality of life and body composition changes, as well as how it affects on skeletal muscle strength in boys with DMD.
Materials and Methods:  Eight boys, ranging from 6 to 12 years old with DMD were enrolled in this study. The patients were randomly assigned to either a hydrotherapy group as the intervention group (Group 1; n=4) or a non-exercise group as the control group (Group 2; n=4), to receive 12 sessions of a hydrotherapy program. The patients were assessed for changes in muscle strength in the lower limbs and back, left and right quadriceps, left and right-hand grip, LBM, SMM, and general mobility and balance, before and after hydrotherapy.
Results: Significant improvements in general mobility and balance were observed, along with a significant increase in muscle strength and lean body mass (P<0.05).
Conclusion: This study suggests that hydrotherapy with a precise protocol of low to moderate intensity can improve general mobility and balance, increase muscle strength in the lower limbs and back, left and right quadriceps, left and right-hand grip, and LBM in patients with DMD. The increase in strength is accompanied by increase in LBM, which not only has implications for function but also has much broader impacts on the health-related quality of life in patients.

Keywords


[1] Tominari T, Aoki Y. “Clinical development of novel therapies for Duchenne muscular dystrophy–current and future”. Neurology and Clinical Neuroscience. 2022. doi: 10.1111/ncn3.12691.   

[2] Carcione M, Luce L, Mazzanti C, Mesa L, Dubrovsky A, Corderí J, Giliberto F. “DMD/BMD-genetics: EP. 114 Theragnosis for Duchenne muscular dystrophy”. Neuromuscular Disorders. 2021; 31: S83. doi: 10.3389/fphar.2021.648390.

[3] Aslesh T, Erkut E, Yokota T. “Restoration of dystrophin expression and correction of Duchenne muscular dystrophy by genome editing”. Expert Opinion on Biological Therapy. 2021; 21(8): 1049-61. doi: 10.1080/14712598.2021.1872539.

[4] Duan D, Goemans N, Takeda SI, Mercuri E, Aartsma-Rus A. “Duchenne muscular dystrophy”. Nature Reviews Disease Primers. 2021; 7(1): 13. doi: 10.1038/s41572-021-00248-3.

[5] Dowling P, Gargan S, Murphy S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K. “The dystrophin node as integrator of cytoskeletal organization, lateral force transmission, fiber stability and cellular signaling in skeletal muscle”. Proteomes. 2021; 9(1): 9. doi: 10.3390/proteomes9010009.

[6] Dubinin MV, Belosludtsev KN. “Ion channels of the sarcolemma and intracellular organelles in Duchenne muscular dystrophy: A role in the dysregulation of ion homeostasis and a possible target for therapy”. International Journal of Molecular Sciences. 2023; 24(3): 2229. doi: 10.3390/ijms24032229.

[7] Lovering RM, Iyer SR, Edwards B, Davies KE. “Alterations of neuromuscular junctions in Duchenne muscular dystrophy”. Neuroscience Letters. 2020; 737: 135304. doi: 10.1016/j.neulet.2020.135304.

[8] Wilson DG, Tinker A, Iskratsch T. “The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction”. Communications Biology. 2022; 5(1): 1022. https://doi.org/10.1038/s42003-022-03980-y.

[9] Chelly J, Desguerre I. “Progressive muscular dystrophies”. Handbook of Clinical Neurology. 2013; 113: 1343-66. doi: 10.1016/B978-0-444-59565-2.00006-X.

[10] Plack M, Wentzell E, Resetar J, Downton M. “Physical therapy for pediatric conditions”. Introduction to Physical Therapy-E-Book. 2021.

[11] Siemionow M, Langa P, Brodowska S, Kozlowska K, Zalants K, Budzynska K, Heydemann A. “Long-term protective effect of human dystrophin expressing chimeric (DEC) cell therapy on amelioration of function of cardiac, respiratory and skeletal muscles in Duchenne muscular dystrophy”. Stem Cell Reviews and Reports. 2022; 18(8): 2872-92. doi: 10.1007/s12015-022-10384-2.

[12] Singh R. “The resistive range of motion exercise training in Duchenne muscular dystrophy: a case study”. TMR Non-Drug Ther. 2023; 6(2) :8. https://doi.org/10.53388/TMRND2022008.

[13] Grange RW, Call JA. “Recommendations to define exercise prescription for Duchenne muscular dystrophy”. Exercise and Sport Sciences Reviews. 2007; 35(1): 12-7. doi: 10.1249/01.jes.0000240020.84630.9d.

[14] Limback KA, Jacobus WD, Wiggins-McDaniel A, Newman R, White RA. “A comprehensive review of Duchenne muscular dystrophy: Genetics, clinical presentation, diagnosis and treatment”. Biotechnology Journal International. 2022; 26(6):1-31. doi: 10.9734/BJI/2022/v26i6662.

[15] Solichin I, Prabowo I, Laras S, Putra NH, Rhatomy S. “Early ambulatory Duchenne muscular dystrophy: First symptomatic stage of ambulation-A case report”. International Journal of Surgery Open. 2021; 33: 100349. doi: 10.1016/j.ijso.2021.100349.

[16] Guglieri M, Bushby K, McDermott MP, Hart KA, Tawil R, Martens WB, Herr BE, McColl E, Wilkinson J, Kirschner J, King WM. “Developing standardized corticosteroid treatment for Duchenne muscular dystrophy. Contemporary clinical trials”. 2017; 58: 34-9. doi: 10.1016/j.cct.2017.04.008.

[17] Jansen M, van Alfen N, Geurts AC, de Groot IJ. “Assisted bicycle training delays functional deterioration in boys with Duchenne muscular dystrophy: the randomized controlled trial ‘no use is disuse’”. Neurorehabilitation and Neural Repair. 2013; 27(9): 816-27. doi: 10.1177/1545968313496326.

[18] Anning JH. “Potential benefits of using exercise as a treatment strategy for Duchenne Muscular Dystrophy (DMD)”. Professionalization of Exercise Physiology. 2022; 25(4).

[19] Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, Carty C, Chaput JP, Chastin S, Chou R, Dempsey PC. “World Health Organization 2020 guidelines on physical activity and sedentary behaviour”. British Journal of Sports Medicine. 2020; 54(24): 1451-62. doi: 10.1136/bjsports-2020-102955.

[20] Thabane L, Ma J, Chu R, Cheng J, Ismaila A, Rios LP, Robson R, Thabane M, Giangregorio L, Goldsmith CH. “A tutorial on pilot studies: the what, why and how”. BMC Medical Research Methodology. 2010; 10: 1-0. http://www.biomedcentral.com/1471-2288/10/1.

[21] Hammer S, Toussaint M, Vollsæter M, NESBJØRG M, Røksund OD, Reychler G, Hans LU, Andersen T. “Exercise training in Duchenne muscular dystrophy: A systematic review and meta-analysis”. Journal of Rehabilitation Medicine. 2022; 54. doi: 10.2340/jrm.v53.985.

[22] Furrer R, Hawley JA, Handschin C. “The molecular athlete: exercise physiology from mechanisms to medals”. Physiological Reviews. 2023. https://doi.org/10.1152/physrev.00017.2022.

[23] Lindsay A, Larson AA, Verma M, Ervasti JM, Lowe DA. “Isometric resistance training increases strength and alters histopathology of dystrophin-deficient mouse skeletal muscle”. Journal of Applied Physiology. 2019; 126(2): 363-75. doi: 10.1152/japplphysiol.00948.2018.

[24] Jacques MF, Onambele-Pearson GL, Reeves ND, Stebbings GK, Dawson EA, Stockley RC, Edwards B, Morse CI. “12-Month changes of muscle strength, body composition and physical activity in adults with dystrophinopathies”. Disability and Rehabilitation. 2022; 44(10): 1847-54. doi: 10.1080/09638288.2020.1808087.

[25] Spaulding HR, Selsby JT. “Is exercise the right medicine for dystrophic muscle”. Med. Sci. Sports Exerc. 2018; 50(9): 1723-32. doi: 10.1249/MSS.0000000000001639.

[26] Spangenburg EE, Booth FW. “Molecular regulation of individual skeletal muscle fibre types”. Acta Physiologica Scandinavica. 2003; 178(4): 413-24. doi: 10.1046/j.1365-201X.2003.01158.x.

[27] Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Brumbaugh D, Case LE, Clemens PR, Hadjiyannakis S, Pandya S, Street N. “Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management”. The Lancet Neurology. 2018; 17(3): 251-67. doi: 10.1016/S1474-4422(18)30024-3.

[28] Anandan D, Anand V, Arunachalam R, Arun B. “Low-intensity aerobic exercises during COVID-19 pandemic in children with Duchenne muscular dystrophy: A home based study”. Indian Journal of Health & Wellbeing. 2022; 13(3). doi: 10.37896/aj11.8/001.

[29] Sayers SP. “The role of exercise as a therapy for children with Duchenne muscular dystrophy”. Pediatric Exercise Science. 2000; 12(1): 23-33. doi: 10.1123/PES.12.1.23.

[30] Atamturk H, Atamturk A. “Therapeutic effects of aquatic exercises on a boy with Duchenne muscular dystrophy”. Journal of Exercise Rehabilitation. 2018; 14(5): 877. doi: 10.12965/jer.1836408.204.

[31] Carayannopoulos AG, Han A, Burdenko IN. “The benefits of combining water and land-based therapy”. Journal of Exercise Rehabilitation. 2020; 16(1): 20. doi: 10.12965/jer.1938742.371.

[32] Chiquoine J, Martens E, McCauley L, Van Dyke JB. “Aquatic therapy”. Canine Sports Medicine and Rehabilitation. 2018: 208-26.

[33] Nelson L, Early D, Iannaccone S. “P. 7.14 effects of a regular aquatic therapy program on one individual with Duchenne Muscular Dystrophy (DMD): A case study”. Neuromuscular Disorders. 2013; 23(9): 777-8. doi: 10.1016/j.nmd.2013.06.495.

[34] McManus BM, Kotelchuck M. “The effect of aquatic therapy on functional mobility of infants and toddlers in early intervention”. Pediatric Physical Therapy. 2007; 19(4): 275-82. doi: 10.1097/PEP.0b013e3181575190.

[35] Ogonowska-Slodownik A, de Lima AA, Cordeiro L, Morgulec-Adamowicz N, Alonso-Fraile M, Güeita-Rodríguez J. “Aquatic therapy for persons with neuromuscular diseases–A scoping review”. Journal of Neuromuscular Diseases. 2022; 9(2): 237-56. doi: 10.3233/JND-210749.

[36] Wells JC, Fewtrell MS. “Measuring body composition”. Archives of Disease in Childhood. 2006; 91(7): 612-7. doi: 10.1136/adc.2005.085522.

[37] Forbes GB. “Human body composition: growth, aging, nutrition, and activity”. Springer Science & Business Media. 2012.

[38] Conable KM, Rosner AL. “A narrative review of manual muscle testing and implications for muscle testing research”. Journal of Chiropractic Medicine. 2011; 10(3): 157-65. doi: 10.1016/j.jcm.2011.04.001.

[39] Bittmann FN, Dech S, Aehle M, Schaefer LV. “Manual muscle testing—force profiles and their reproducibility”. Diagnostics. 2020; 10(12): 996. doi: 10.3390/diagnostics10120996.

[40] Eyuboglu E, Aslan CS, Karakulak I, Sahin FN. “Is there any effect of non-suitable pull technique in back & leg dynamometers on the leg strength test results”. Acta Medica Mediterranea. 2019; 35(3): 1373-8. doi: 10.19193/0393-6384_2019_3_211.

[41] Cuenca-Garcia M, Marin-Jimenez N, Perez-Bey A, Sanchez-Oliva D, Camiletti-Moiron D, Alvarez-Gallardo IC, Ortega FB, Castro-Pinero J. “Reliability of field-based fitness tests in adults: a systematic review”. Sports Medicine. 2022; 52(8): 1961-79. doi: 10.1007/s40279-021-01635-2.

[42] Litchfield RE. Grip strength-What is it? What does it mean. Human Sciences Extension and Outreach Publications. 2013; 38. https://dr.lib.iastate.edu/handle/20.500.12876/33296.

[43] Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, Sayer AA. “A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach”. Age and Ageing. 2011; 40(4): 423-9. doi: 10.1093/ageing/afr051.

[44] Beauchet O, Fantino B, Allali G, Muir SW, Montero-Odasso M, Annweiler C. “Timed up and go test and risk of falls in older adults: A systematic review”. The Journal of Nutrition, Health & Aging. 2011; 15: 933-8. doi: 10.1007/s12603-011-0062-0.

[45] Herman T, Giladi N, Hausdorff JM. “Properties of the ‘timed up and go’test: more than meets the eye”. Gerontology. 2011; 57(3): 203-10. doi: 10.1159/000314963.

[46] Demirci C, Sütçü G, Ayvat F, Onursal Kilinç ÖZ, Doğan M, Ayvat E, Kurt C, Erdem Özdamar SE, Yildirim Sİ, Kilinç M, Tan E. “Identifying a cut-off point for timed up and go test in neuromuscular diseases”. Turkish Journal of Neurology. 2022; 28(1).

[47] Ascencio EJ, Cieza-Gómez GD, Carrillo-Larco RM, Ortiz PJ. “Timed up and go test predicts mortality in older adults in Peru: a population-based cohort study”. BMC Geriatrics. 2022; 22(1): 1-3. https://doi.org/10.1186/s12877-022-02749-6.

[48] Honório SA, Batista M, Santos J, Petrica J, Mesquita H, Serrano J, Ribeiro J, Martins J. “Physical exercise as a tool to delay the development process of Duchenne muscular dystrophy”. Muscular Dystrophies. 2019. doi: 10.5772/intechopen.84453.

[49] Honório S, Batista M, Paulo R, Mendes P, Santos J, Serrano J, Petrica J, Mesquita H, Faustino A, Martins J. “Aquatic influence on mobility of a child with Duchenne muscular dystrophy: Case study”. International Scientific Researchs Journal. 2016; 72(8): 337-50. http://hdl.handle.net/10400.11/5546.

[50] Millner R, Hardoon V, Lindsay D. “Improvements in the range of motion, power and agility in active people utilizing multiple muscle contract-relax-antagonist-contract (CRAC) stretches”. Journal of Physical Education and Sport. 2022; 22(2): 281-8. doi: 10.7752/jpes.2022.02036.

[51] Mirmoezzi M, Yousefi M, Salmanpour M. “The effects of aquatic isometric and isotonic resistance exercises on fatigue index of aged men”. Sleep and Hypnosis. 2019; 21(1): 44-50. http://dx.doi.org/10.5350/Sleep.Hypn.2019.21.0171.

[52] Wong B, Signorovitch J, Hu S, Bange J, Rybalsky I, Shellenbarger K, Tian C, Swallow E, Song J, Ward S. “Relationships between ambulatory function and body composition in patients with Duchenne muscular dystrophy”. Neuromuscular Disorders. 2017; 27: S103. doi: 10.1016/j.nmd.2022.02.009.

[53] Allen DG, Whitehead NP, Froehner SC. “Absence of dystrophin disrupts skeletal muscle signaling: roles of Ca2+, reactive oxygen species, and nitric oxide in the development of muscular dystrophy”. Physiological Reviews. 2016; 96(1): 253-305. doi: 10.1152/physrev.00007.2015.

[54] Butterfield RJ, Kirkov S, Conway KM, Johnson N, Matthews D, Phan H, Cai B, Paramsothy P, Thomas S, Feldkamp ML. “Evaluation of effects of continued corticosteroid treatment on cardiac and pulmonary function in non‐ambulatory males with Duchenne muscular dystrophy from MD STAR net”. Muscle & Nerve. 2022; 66(1): 15-23. doi: 10.1002/mus.27490. 

[55] Cowen L, Mancini M, Martin A, Lucas A, Donovan JM. “Variability and trends in corticosteroid use by male United States participants with Duchenne muscular dystrophy in the Duchenne Registry”. BMC Neurology. 2019; 19: 1-0. doi: 10.1186/s12883-019-1304-8.

[56] Lopez JR, Kolster J, Zhang R, Adams J. “Increased constitutive nitric oxide production by whole body periodic acceleration ameliorates alterations in cardiomyocytes associated with utrophin/ dystrophin deficiency”. Journal of Molecular and Cellular Cardiology. 2017; 108: 149-57. doi: 10.1016/j.yjmcc.2017.06.004.

[57] Elangkovan N, Dickson G. “Gene therapy for Duchenne muscular dystrophy”. Journal of Neuromuscular Diseases. 2021; 8(s2): S303-16. doi: 10.3233/JND-210678.

[58] Asher DR, Thapa K, Dharia SD, Khan N, Potter RA, Rodino-Klapac LR, Mendell JR. “Clinical development on the frontier: Gene therapy for Duchenne muscular dystrophy”. Expert Opinion on Biological Therapy. 2020; 20(3): 263-74. doi: 10.1080/14712598.2020.1725469.

[59] Alic L, Griffin IV JF, Eresen A, Kornegay JN, Ji JX. “Using MRI to quantify skeletal muscle pathology in Duchenne muscular dystrophy: A systematic mapping review”. Muscle & Nerve. 2021; 64(1): 8-22. doi: 10.1002/mus.27133.

[60] Wade CK, Forstch J. “Exercise and Duchenne muscular dystrophy”. Journal of Neurologic Physical Therapy. 1996; 20(2): 20-3. doi: 10.5435/00124635-200203000-00009.

[61] Booth FW, Chakravarthy MV, Spangenburg EE. “Exercise and gene expression: physiological regulation of the human genome through physical activity”. The Journal of Physiology. 2002; 543(2): 399-411. doi: 10.1113/jphysiol.2002.019265.